80=-16t^2+32t+80

Simple and best practice solution for 80=-16t^2+32t+80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 80=-16t^2+32t+80 equation:



80=-16t^2+32t+80
We move all terms to the left:
80-(-16t^2+32t+80)=0
We get rid of parentheses
16t^2-32t-80+80=0
We add all the numbers together, and all the variables
16t^2-32t=0
a = 16; b = -32; c = 0;
Δ = b2-4ac
Δ = -322-4·16·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1024}=32$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-32}{2*16}=\frac{0}{32} =0 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+32}{2*16}=\frac{64}{32} =2 $

See similar equations:

| 21x+3(-7x+7)=21 | | 8-5w=-22 | | (x+2)^2+1=2x+13 | | 3(x+6)^2-(2x+6)^2=44 | | -4x+14=-18 | | 4m+16-1m+49=0 | | 21x+133/28+4x+100/28=77 | | (z*z*z*z*z*z)-8=0 | | 20x-3x-7x+5=9(x+1) | | Y=-3.7891x+155.38 | | 5=2/3(1)+b | | 0.5x^2-7.5x+8=0 | | 9+-5/6a=5 | | 4-6x-4=32 | | (3x+19/4)+(x+25/7)=11 | | 12(x+2)=5x+36+4x | | -13s−-19s−-13=19 | | 2x=(x+3)+3 | | 4-6x-4=33 | | 2x+7=1x-3 | | 1/x+1/3=7 | | 5-(3x-2)+1x=-2x+1 | | 3x+19/4+x+25/7=11 | | ײ+6x+8=0 | | 17-x=1/3^15+6 | | 2x=(x+2)4 | | 21+7z=441 | | ×2+6x+8=0 | | 11x7=4x+7x-3x+40 | | 20x-4-11x=-13 | | 5x+16=−3 | | 5x+16=−3x5x+16=−3x. |

Equations solver categories